Home
Class 12
MATHS
Let ABC be a triangle having its centroi...

Let ABC be a triangle having its centroid its centroid at G. If S is any point in the plane of the triangle, then `vec(SA) + vec(SB)+vec(SC)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

In triangle ABC, find vec(AB)+vec(BC)+vec(CA)

Let ABC be a triangle whose centroid is G, orhtocentre is H and circumcentre is the origin 'O'. If D is any point in the plane of the triangle such that no three of O, A, C and D are collinear satisfying the relation vec(AD) + vec(BD) + vec(CH ) + 3 vec(HG)= lamda vec(HD) , then what is the value of the scalar 'lamda' ?

If S is circumcentre, O is orthocentre of DeltaABC , then vec(SA)+vec(SB)+vec(SC) =

If G is centroid of the triangle ABC, then find vec(GA)+vec(GB)+vec(GC).

D, E, F are the midpoints of the sides bar(BC), bar(CA) " and " bar(AB) respectively of the triangle ABC. If P is any point in the plane of the triangle, show that vec(PA)+vec(PB)+vec(PC)=vec(PD)+vec(PE)+vec(PF) .

Let O, O' and G be the circumcentre, orthocentre and centroid of a Delta ABC and S be any point in the plane of the triangle. Statement -1: vec(O'A) + vec(O'B) + vec(O'C)=2vec(O'O) Statement -2: vec(SA) + vec(SB) + vec(SC) = 3 vec(SG)

Let O, O' and G be the circumcentre, orthocentre and centroid of a Delta ABC and S be any point in the plane of the triangle. Statement -1: vec(O'A) + vec(O'B) + vec(O'C)=2vec(O'O) Statement -2: vec(SA) + vec(SB) + vec(SC) = 3 vec(SG)

Let O, O' and G be the circumcentre, orthocentre and centroid of a Delta ABC and S be any point in the plane of the triangle. Statement -1: vec(O'A) + vec(O'B) + vec(O'C)=2vec(O'O) Statement -2: vec(SA) + vec(SB) + vec(SC) = 3 vec(SG)