Home
Class 11
MATHS
यदि आरगैण्ड तल में किसी समबाहुए त्र...

यदि आरगैण्ड तल में किसी समबाहुए त्रिभुज के शीर्ष ` z _ 1 , z _ 2 , z _ 3 ` हो, तो साबित कीजिये कि
` z _ 1 ^ 2 + z _ 2 ^ 2 + z _ 3^ 2 = z _ 1 z _ 2 + z _ 2 z _ 3 + z _ 3 z _1 `

Promotional Banner

Similar Questions

Explore conceptually related problems

If z_1 = 4 - 7i , z_2 = 2 + 3i and z_3 = 1 + i show that z_1 + (z_2 + z_3) = (z_1 + z_2)+z_3

If z_(1) = 3, z_(2) = -7i, and z_(3) = 5 + 4i, show that z_(1)(z_(2) + z_(3)) = z_(1) z_(2) + z_(1) z_(3)

If z_(1) = 3, z_(2) = -7i, and z_(3) = 5 + 4i, show that (z_(1) + z_(2)) z_(3) = z_(1) z_(3) + z_(2) z_(3)

If |z_1-1|<1 , |z_2-2|<2 , |z_3-3|<3 then |z_1+z_2+z_3|

If z_(1) + z_(2) + z_(3) = 0 and |z_(1)| = |z_(2)| = |z_(3)| = 1 , then value of z_(1)^(2) + z_(2)^(2) + z_(3)^(2) equals

If 2z_1-3z_2 + z_3=0 , then z_1, z_2 and z_3 are represented by