Home
Class 12
MATHS
The roots of (x-b)(x-c) +(x-a)(x-c) ...

The roots of ` (x-b)(x-c) +(x-a)(x-c) +(x-a) (x-b)=0` are

Promotional Banner

Similar Questions

Explore conceptually related problems

Both the roots of the equation (x-b)(x-c)+(x-a)(x-c)+(x-a)(x-b)=0 are always a. positive b. real c. negative d. none of these

Both the roots of the equation (x-b)(x-c)+(x-a)(x-c)+(x-a)(x-b)=0 are always a.positive b.real c.negative d.none of these

Both the roots of the equation (x-b)(x-c)+(x-a)(x-c)+(x-a)(x-b)=0 are always a. positive b. real c. negative d. none of these

Both the roots of the equation (x-b)(x-c)+(x-a)(x-c)+(x-a)(x-b)=0 are always a. positive b. real c. negative d. none of these

If the roots of the equation (x-b)(x-c)+(x-c)(x-a)+(x-a)(x-b)=0 are equal then

If the roots of the equation (x-b)(x-c)+(x-c)(x-a)+(x-a)(x-b)=0 are equal then

Show that the roots of (x-b)(x-c)+(x-c)(x-a)+(x-a)(x-b)=0 are real, and that they cannot be equal unless a=b=c.

Both the roots of the equation (x-b)(x-c)+(x-a)(x-c)+(x-a)(x-b)=0 are always (1980,1M) positive (b) negative (c) real (d) none of these

If a,b,c are real, then both the roots of the equation (x-b)(x-c)+(x-c)(x-a)+(x-a)(x-b)=0 are always (A) positive (B) negative (C) real (D) imaginary.