Home
Class 12
MATHS
At a point (x1,y1) on the curve x^3+y^3=...

At a point `(x_1,y_1)` on the curve `x^3+y^3=3axy`, show that the tangent is `(x_1^2-ay_1)x+(y_1^2-ax_1)y=ax_1y_1`.

Promotional Banner

Similar Questions

Explore conceptually related problems

At the point (x_(1),y_(1)) on the curve x^(3)+y^(3)=3axy show that the tangent is (x_(1)^(2)-ay_(1))x+(y_(1)^(2)-ax_(1))y=ax_(1)y_(1)

If the tangent at (x_1,y_1) to the curve x^3+y^3=a^3 meets the curve again in (x_2,y_2), then prove that (x_2)/(x_1)+(y_2)/(y_1)=-1

If the tangent at (x_1,y_1) to the curve x^3+y^3=a^3 meets the curve again in (x_2,y_2), then prove that (x_2)/(x_1)+(y_2)/(y_1)=-1

If the tangent at (x_1,y_1) to the curve x^3+y^3=a^3 meets the curve again in (x_2,y_2), then prove that (x_2)/(x_1)+(y_2)/(y_1)=-1

If the tangent at (x_1,y_1) to the curve x^3+y^3=a^3 meets the curve again in (x_2,y_2), then prove that (x_2)/(x_1)+(y_2)/(y_1)=-1

If the tangent at (x_(1),y_(1)) to the curve x^(3)+y^(3)=a^(3) meets the curve again at (x_(2),y_(2)) , then (x_(2))/(x_(1))+(y_(2))/(y_(1)) is equal to

If the tangent at (x_0,y_0) to the curve x^3+y^3=a^3 meets the curve again at (x_1,y_1) then x_1/x_0+y_1/y_0 is equal to :

If the tangent at (x_(0),y_(0)) to the curve x^(3)+y^(3)=a^(3) meets the curve again at (x_(1),y_(1)) , then (x_(1))/(x_(0))+(y_(1))/(y_(0)) is equal to

If the tangent at (x_(0),y_(0)) to the curve x^(3)+y^(3)=a^(3) meets the curve again at (x_(1),y_(1)) , then (x_(1))/(x_(0))+(y_(1))/(y_(0)) is equal to