Home
Class 12
MATHS
If L = sin^2 ((pi)/(16)) - sin^2 ( pi/...

If ` L = sin^2 ((pi)/(16)) - sin^2 ( pi/8) ` and
`M = cos^2 ( (pi)/(16)) - sin^2 (pi/8),` then :

Promotional Banner

Similar Questions

Explore conceptually related problems

"sin"^(4)(pi)/(16) + "sin"^(4) (3pi)/(16) + "sin"^(4) (5pi)/(16) + "sin"^(4) (7pi)/(16)=

Evaluate : cos ""(pi)/(8) sin ""(pi)/(8)

Find the value of sin^2(pi/16)+ sin^2 ((3pi)/16)+sin^2 ((5pi)/16)+sin^2((7pi)/16) .

[(1 + cos ((pi) / (8)) + i sin ((pi) / (8))) / (1 + cos ((pi) / (8)) - sin ((pi) / (8 )))] ^ (8) =?

sin ^ (4) ((pi) / (16)) + sin ^ (4) (3 (pi) / (16)) + sin ^ (4) (5 (pi) / (16)) + sin ^ ( 4) (7 (pi) / (16)) = (3) / (2)

(cos ^ (2) ((pi) / (4) -A) -sin ^ (2) ((pi) / (4) -A)) / (cos ^ (2) ((pi) / (4) + A) + sin ^ (2) ((pi) / (4) + A) =)

sin^(2)((pi)/(8))+sin^(2)((3pi)/(8))+sin^(2)((5pi)/(8))+sin^(2)((7pi)/(8))= .........

((sin ^ (2) a sin ^ (2) b + sin ^ (2) a cos ^ (2) b + cos ^ (2) a) + (sin ^ (2) (2 pi + a) + cos ^ (2) (6 pi-a) +1)) / (sin ^ (2) ((pi) / (3) -4 pi) + cos ^ (2) (8 pi + (pi) / (3)) +2))

Prove that: sin^(2) (pi/8) +sin^(2) ((3pi)/8) +sin^(2)((5pi)/8)+sin^(2)((7pi)/8)=2

sin (pi/2) = 2 sin(pi/4) cos (pi/4)