Home
Class 12
MATHS
Find (dy)/(dx), when x=(logt+cost),y=(...

Find `(dy)/(dx)`, when
`x=(logt+cost),y=(e^(t)+sint)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find dy/dx , when : x=e^(t)(sint+cost)andy=e^(t)(sint-cost) .

Find dy/dx when x = e^t (sin t + cos t), y = e^t (sin t - cos t)

Find (dy)/(dx) , when x=a(t+sint) and y=a(1-cost).

Find dy/dx when x = e^(t-sint), y = e^(t + cost)

Find (dy)/(dx), when x=(e^(t)+e^(-t))/(2) and y=(e^(t)-e^(-t))/(2)

Find (dy)/(dx) , if y=12(1-cost) , x=10(t-sint)

Find (dy)/(dx) , if x=a(t-sint), y=a(1-cost)at t=(pi)/2

Find (d^2y)/(dx^2) when x=a(t-sint) and y = a (1+cost) at t = pi/2

Find (dy)/(dx),quad when x=(e^(t)+e^(-t))/(2) and y(e^(t)-e^(-t))/(2)

Find (dy)/(dx), when x=(e^t+e^(-t))/2 \ a n d \ y=(e^t-e^(-t))/2