Home
Class 12
MATHS
Let P and Q be 3xx3 matrices with P!=Q. ...

Let P and Q be `3xx3` matrices with `P!=Q`. If `P^(3)=Q^(3)` and `P^(2)Q=Q^(2)P`, then determinant of `(P^(2)+Q^(2))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Let P and Q be 3xx3 matrices P ne Q . If P^(3)=Q^(3) and P^(2)Q=Q^(2)P , then determinant of (P^(2)+Q^(2)) is equal to :

Let P and Q be 3 xx3 matrices with P != Q . If P^(3) = Q^(3) and P^(2) Q = P^(2)Q = Q^(2) P , then determinant of (P^(2) + Q^(2)) is equal to :

Let P and Q be 3xx3 matrices with P!=Q . If P^3=Q^3 and P^2Q=Q^2P , then determinant of (P^2+""Q^2) is equal to (1) 2 (2) 1 (3) 0 (4) 1

Let P and Q be 3xx3 matrices with P!=Q . If P^3=""Q^3a nd""P^2Q""=""Q^2P , then determinant of (P^2+""Q^2) is equal to (1) 2(2) 1 (3)0 (4) 1

Let P and Q be 3xx3 matrices with P!=Q . If P^3=""Q^3a n d""P^2Q""=""Q^2P , then determinant of (P^2+""Q^2) is equal to (1) 2 (2) 1 (3) 0 (4) 1

Let P and Q be 3xx3 matrices with P!=Q . If P^3=""Q^3a n d""P^2Q""=""Q^2P , then determinant of (P^2+""Q^2) is equal to (1) 2 (2) 1 (3) 0 (4) 1

Let P and Q be 3xx3 matrices with P!=Q . If P^3=""Q^3a n d""P^2Q""=""Q^2P , then determinant of (P^2+""Q^2) is equal to (1) 2 (2) 1 (3) 0 (4) 1

(p-q)^(3)-(p+q)^(3) is equal to

if 2^(p)+3^(q)=17 and 2^(p+2)-3^(q+1)=5 then find the value of p&q