Home
Class 10
MATHS
If f(x)=x^(2), g(x)=3x and h(x)=x-2. Pro...

If `f(x)=x^(2), g(x)=3x and h(x)=x-2`. Prove that `(fog)oh=fo(goh)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=2x+3, g(x)=1-2x and h(x) =3x . Prove that fo(goh)=(fog)oh .

Given f(x) = x-1, g(x) = 3x+1 and h(x) = x^2 show that (fog )oh = f o(goh)

If f(x)=2x+3 , g(x)=1-2x and h(x)=3x. Prove that f o(g o h) = (f o g ) o h

Let f,\ g,\ h be real functions given by f(x)=sinx , g(x)=2x and h(x)=cosx . Prove that fog=go(fh)dot

Let f,\ g,\ h be real functions given by f(x)=sinx , g(x)=2x and h(x)=cosx . Prove that fog=go(fh)dot

If f(x)=2x+3, g(x) = 1-2x and h(x)=3x . Prove that f o (g o h) = (f o g) o h

Let f, g, h be three functions from R to R defined by f(x)=x+3, g(x) = 2x^(2) ,h(x) = 3x +1. Show that (fog)oh=fo(goh).

f(x)=x^(2)+5,g(x)=x-8 then fog

If f(x)=x+4, g(x)=2x-1 and h(x) =3x then find (fog)oh .