Home
Class 12
MATHS
Let g(x,y) = (x^(2)y)/(x^(4) + y^(2)) fo...

Let `g(x,y) = (x^(2)y)/(x^(4) + y^(2))` for (x,y) `ne` (0,0) and f(0,0)=0.
(i) Show that `lim_((x,y) to (0,0)) g(x,y)=0` along every line `y=mx, m in R`.
(ii) Show that `lim_((x,y) to (0,0)) g(x,y) = k/(1+k^(2))`, along every parabola `y=kx^(2), k in R{0}`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x,y) = (y^(2) -xy)/(sqrt(x)-sqrt(y)) for (x,y) ne (0,0) . Show that lim_((x,y) to (0,0)) f(x,y) =0

Let g(x,y) = (e^(y) sin x)/x , for x ne 0 and g(0,0) =1. Show that g is continous at (0,0).

Evaluate: lim_((x,y)->(0,0))(x^(3)y)/(x^(4)+y^(4))

Evaluate lim_((x,y) to (0,0)) cos((x^(3) + y^(3))/(x+y+2)) . If the limit exists.

Let g(x+(1)/(y)) + g(x-(1)/(y)) = 2g(x) g((1)/(y)) AA x, y in R, y !=0 and g(0) = 0. Then find g(1), g(2) .

If f(x + y) = f(x)f(y) for all x, y and and f(x) = 1 + x g(x), where lim_(xrarr0)g(x)=1 ) , show that f'(x) = f(x).