Home
Class 12
MATHS
cos[Cos^(-1)(-1/7)+Sin^(-1)(-1/7)]=...

`cos[Cos^(-1)(-1/7)+Sin^(-1)(-1/7)]=`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sin[cos^(-1)(-(1)/(7))+sin^(-1)(-(1)/(7))] is

(Cos^(-1)(41//49))/(Sin^(-1)(2//7))=

(cos^(-1)(41/49))/(sin^(-1)(2/7))

(cos^(-1)(41/49))/(sin^(-1)(2/7))=

Prove that cos^(-1) ((5)/(13))+cos^(-1) (-7/25)+sin^(-1) (36)/(325)=pi

Sin^(-1)(sin3)+Cos^(-1)(cos7)-Tan^(-1)(tan5)=

Statement-1: cosec^(-1)(3)/(2)+cos^(-1)(2/3)-2cot^(-1)(1/7)-cot^(-1)7=cot^(-1)7 Statement-2: cos^(-1)x=sin^(-1)((1)/(x)) and for xgt0cot^(-1)x=tan^(-1)((1)/(x))

Statement-1: cosec^(-1)(3)/(2)+cos^(-1)(2/3)-2cot^(-1)(1/7)-cot^(-1)7=cot^(-1)7 Statement-2: cos^(-1)x=sin^(-1)((1)/(x)) and for xgt0cot^(-1)x=tan^(-1)((1)/(x))

Find the value of sin^(-1)(sin7)+cos^(-1)(cos12)+tan^(-1){tan(-8)}+cot^(-1){cot(-11)}dot

The value of sin^(-1)(sin((47 pi)/(7)))+cos^(-1)cos((60 pi)/(7))+tan^(-1)(-(tan)(29 pi)/(8))+cot^(-1)(cot(-(35 pi)/(8)))