Home
Class 11
MATHS
Prove that cos(pi/4+x)+cos(pi/4-x)=sqrt...

Prove that `cos(pi/4+x)+cos(pi/4-x)=sqrt(2)cosx` .

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: cos(pi/4+x)+cos(pi/4-x)=sqrt(2)\ cos x

Prove that: cos(pi/4+A)+cos(pi/4-A)=sqrt(2)cosA

Prove that: cos(pi/4+A)+cos(pi/4-A)=sqrt(2)cosA

prove that cos(pi/4+x)+cos(pi/4-x)=sqrt2cosx

Prove that cos ( pi/4 +x)+cos ( pi/4 - x) = sqrt(2)cos x

Prove that: cos((3pi)/4+x)-cos((3pi)/4-x)=-sqrt(2)sinx

Prove that: cos((3pi)/4+x)-cos((3pi)/4-x)=-sqrt(2)sinx

Using application of trignometric formulas prove that (i)cos(pi/4+x)+cos(pi/4-x)=sqrt2cos x(i1)sin(7pi/12)cos(pi/4)-cos(7pi/12)sin(pi/4)

Prove that: cos((pi)/(4)+x)+cos((pi)/(4)-x)=sqrt(2)cos x