Home
Class 9
MATHS
If a+b+c=0, then a^(3)+b^(3)+c^(3) is ...

If a+b+c=0, then ` a^(3)+b^(3)+c^(3)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If a+b +c =0 then value of a^(3) +b^(3) +c^(3) is

If a+b+c=0 , then (a^(3) + b^(3) + c^(3) ) div (abc) is equal to

If a+b+ 2c=0 , then the value of a^(3) + b^(3) + 8c^(3) is equal to

If a+b+c = 0,then (a^3+b^3+c^3)^2 = ?

If a + b + c = 0 , show that a^(3) + b^(3) + c^(3) = 3abc The following are the steps involved in showing the above result. Arrange them in sequential order (A) a^(3) + b^(3) + 3ab (-c) = -c^(3) (B) (a + b)^(3) = (-c)^(3) (C) a + b + c = 0 rArr a + b = -c (D) a^(3) + b^(3) + 3ab (a +b) = -c^(3) (E) a^(3) + b^(3) + c^(2) = 3abc

Ifb is, the mean proportional of a and c, then (a-b)^(3): (b-c)^(3) equals