Home
Class 10
MATHS
" 12."(a^(x)log(e)x-cos x*x^(2))...

" 12."(a^(x)log_(e)x-cos x*x^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

Differentiate wrt x : (a^(x)log_(e)x-cos x*x^(2))

Differentiate wrt x : (a^(x)log_(e)x-cos x*x^(2))

Find the range of f(x)=log_(e)x-((log_(e)x)^(2))/(|log_(e)x|)

Evaluate int(1+x^(2)log_(e)x)/(x+x^(2)log_(e)x)dx

Evaluate int(1+x^(2)log_(e)x)/(x+x^(2)log_(e)x)dx

Evaluate int(1+x^(2)log_(e)x)/(x+x^(2)log_(e)x)dx

Evaluate int(1+x^(2)log_(e)x)/(x+x^(2)log_(e)x)dx

Find the range of f(x)=(log)_(e)x-(((log)_(e)x)^(2))/(|(log)_(e)x|)

(cos x)/("log"_(e)x)

If f(x)=|{:(2^(-x),e^(x log_(e)2),x^(2)),(2^(-3x),e^(3x log_(e)2),x^(4)),(2^(-5x),e^(5x log_(e)2),1):}| then show that f(x) is symmetric about origin