Home
Class 12
MATHS
y=cos^(-1)(2x+1)/(2sqrt(2x))...

y=cos^(-1)(2x+1)/(2sqrt(2x))

Promotional Banner

Similar Questions

Explore conceptually related problems

y=sin^(-1)((x)/(sqrt(1+x^(2))))+cos^(-1)((1)/(sqrt(1+x^(2))))

f(x)=sqrt(sin(cos x))+ln(-2cos^(2)x+3cos x+1)+e^(cos^(-1))((2sin x+1)/(2sqrt(2sin x)))

If y=(x cos^(-1)x)/(sqrt(1-x^(2)))-log sqrt(1-x^(2)), then prove that (dy)/(dx)=(co^(1-x)x)/((1-x^(2))^((3)/(2)))

lim_(x rarr(1)/(sqrt(2)^(+)))(cos^(-1)(2x sqrt(1-x^(2))))/((x-(1)/(sqrt(2))))-lim_(x rarr(1)/(sqrt(2)^(-)))(cos^(-1)(2x sqrt(1-x^(2))))/((x-(1)/(sqrt(2))))

lim _(x to ((1)/(sqrt2))^(+))(cos ^(-1) (2x sqrt(1- x ^(2))))/((x-(1)/(sqrt2)))- lim _(x to ((1)/(sqrt2))^(-))(cos ^(-1) (2x sqrt(1-x ^(2))))/((x- (1)/(sqrt2)))=

If y=cos^(-1){(2x-3sqrt(1-x^(2)))/(sqrt(13))}, find (dy)/(dx)

If y=sin^(-1)(x/(sqrt(1+x^2)))+cos^(-1)(1/(sqrt(1+x^2))), 0

sin ^ (- 1) ((x ^ (2)) / (4) + (y ^ (2)) / (9)) + cos ^ (- 1) ((x) / (2sqrt (2)) + (y) / (3sqrt (2)) - 2)