Home
Class 12
MATHS
If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)...

If `x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+tan^(-1)((x z)/(y r))` is equal to `pi` (b) `pi/2` (c) 0 (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+tan^(-1)((x z)/(y r)) is equal to (a) pi (b) pi/2 (c) 0 (d) none of these

If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+tan^(-1)((x z)/(y r)) is equal to (a) pi (b) pi/2 (c) 0 (d) none of these

If x^2+y^2+z^2=r^2,t h e ntan^(-1)((z y)/(x r))+tan^(-1)((x z)/(y r))+tan^(-1)((x y)/(z r)) is equal to pi (b) pi/2 (c) 0 (d) none of these

If x^(2)+y^(2)+z^(2)=r^(2) and x,y,z>0, then tan^(-1)((xy)/(zr))+tan^(-1)((yz)/(xz))+tan^(-1)((zx)/(yr)) is equal to

If x^2 + y^2 + z^2 = r^2 and x, y, z > 0 , then tan^-1((xy)/(zr))+tan^-1((yz)/(xr))+tan^-1((zx)/(yr)) is equal to

If x, y, z are all non zero and x^(2)+y^(2)+z^(2)=r^(2) then tan ^(-1)((y z)/(x r))+tan ^(-1)((z x)/(y r))+tan ^(-1)((x y)/(z r))

If tan^(-1) x + tan^(-1)y + tan^(-1)z= pi then x + y + z is equal to

If tan^(-1) x + tan^(-1)y + tan^(-1)z= pi then x + y + z is equal to

If tan ^(-1) x+tan ^(-1) y+tan ^(-1) z=(pi)/(2), then 1-x y-y z-z x=

If tan ^(-1) x+tan ^(-1) y+tan ^(-1) z=(pi)/(2) then x y+y z+z x=