Home
Class 11
MATHS
1.quad z=-1-i sqrt(3)...

1.quad z=-1-i sqrt(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

If n is a positive integer but not a multiple of 3 and z=-1+i sqrt(3), then (z^(2n)+2^(n)z^(n)+2^(2n)) is equal to

Find the modulus and the arguments of the complex number z=-1quad -i sqrt(3)

Principal argument of z=-1-i sqrt(3)

Represent the complex number z=1+i sqrt(3) in the polar form.

If z_(1)=1+i sqrt(3) , z_(2)=1-i sqrt(3), then (z_(1)^(100)+z_(2)^(100))/(z_(1)+z_(2))=

Find the polar form of the complex number z=-1+ sqrt(3)i

Given the complex number z= (-1 + sqrt3i)/(2) and w= (-1- sqrt3i)/(2) (where i= sqrt-1 ) Calculate the modulus and argument of (w)/(z)

Given the complex number z= (-1 + sqrt3i)/(2) and w= (-1- sqrt3i)/(2) (where i= sqrt-1 ) Calculate the modulus and argument of w and z

Given the complex number z= (-1 + sqrt3i)/(2) and w= (-1- sqrt3i)/(2) (where i= sqrt-1 ) Represent z and w accurately on the complex plane.

Find the arguments of z_(1)=sqrt3+i and z_(2)=-1-isqrt3 and "hence,calculate arg"(z_(1)z_(2)) and "arg" (z_(1)/(z_(2)))