Home
Class 12
MATHS
" Prove that ":(i)int(-a)^(a)sqrt((a-x)/...

" Prove that ":(i)int_(-a)^(a)sqrt((a-x)/(a+x))dx=a pi

Promotional Banner

Similar Questions

Explore conceptually related problems

" (b) "int_(0)^(a)sqrt((a-x)/(a+x))dx=a((pi)/(2)-1)

Prove that: int_(-a)^(a) x^(3) sqrt(a^(2) -x^(2) ) dx=0

Prove that: int_(-a)^(a) x^(3) sqrt(a^(2) -x^(2) ) dx=0

Prove that int_(0)^(1) log(sqrt(1-x)+sqrt(1+x))dx = (1)/(2) log 2 + (pi)/(4) - (1)/(2)

Prove that : int_(0)^(a) (dx)/(x+sqrt(a^(2)-x^(2)))=(pi)/(4)

Prove that : int_(0)^(1) (log x)/(sqrt(1-x^(2)))dx=-(pi)/(2)log 2

Prove that : int_(0)^(pi//2)(x)/(sin x +cos x)dx= (pi)/(4sqrt(2)) log |(sqrt(2)+1)/(sqrt(2)-1)|

Prove that : int_(0)^(pi//2)(x)/(sin x +cos x)dx= (pi)/(4sqrt(2)) log |(sqrt(2)+1)/(sqrt(2)-1)|

int_(-pi)^(pi)sqrt(1+cos 4x)dx=

Prove that : int_(0)^(a) (sqrt(x))/(sqrt(x)+sqrt(a)-x)dx=(a)/(2)