Home
Class 12
MATHS
int 1/ sqrt (a^2 + x^2) dx = log ( x + s...

`int 1/ sqrt (a^2 + x^2) dx = log ( x + sqrt(x^2 + a^2)) + c`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that int frac{1}{sqrt (x^2 - a^2)} dx = log (x+ sqrt (x^2 -a^2)) + c

int(1)/(sqrt(a^2+x^2))dx=log|x+sqrt(a^2+x^2)|+c

int log (x+sqrt(x^(2)+a^(2)))dx =

int log(x+sqrt(x^(2)+a^(2)))dx

int frac {x+1}{x+2} dx =............ A) x+2 - log(x+2) + c B) sqrt (x^2 + 3x +2) -(1/2) log x + (3/2) + sqrt (x^2 + 3x +2) + c C) sqrt (x^2 + 3x +2) +(1/2) log x + (3/2) + sqrt (x^2 + 3x +2) + c D) sqrt (x^2 + 3x +2) -(1/2) log x + (3/2) - sqrt (x^2 + 3x +2) + c

int log (x+sqrt(x^(2)-1))dx=

int(1)/(sqrt(x^(2)-a^(2)))=log(x+sqrt(x^(2)-a^(2))+c

int (1)/( x sqrt( (log x)^(2) - 5 ) ) dx is

prove int(dx)/(sqrt(x^2-a^2)) = log|x+sqrt(x^2-a^2)|+c

" (1) "int log(x+sqrt(x^(2)-a^(2)))dx