Home
Class 11
MATHS
If z=x+iy, x,y in R such that z!=1 and |...

If `z=x+iy, x,y in R` such that `z!=1` and `|z-1|!=1.` If `(z-1)/(e^((i pi)/(3)))+(e^((i pi)/(3)))/(z-1)` is real, then locus of `z` is a straight line whose slope is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let z_(1)=e^((i pi)/(5))

if |z-1|=|z-i| then locus of z is

If Im((z-1)/(e^(theta i))+(e^(theta i))/(z-1))=0, then find the locus of z

If arg((z-1)/(z+1))=(pi)/(2) then the locus of z is

If (pi)/(8)+i beta=cot^(-1)(z) where z=x+iy then the locus of z is

If z=6e^(i(pi)/(3)) then |e^(iz)=1

If z=x+iy such that |z+1|=|z-1| and arg((z-1)/(z+1))=(pi)/(4) then

if Amp((z+2)/(z-4i))=(pi)/(2), then the locus of z=x+iy is