Home
Class 11
MATHS
If A+B+C=pi, prove that sin 2A+sin 2B+si...

If `A+B+C=pi`, prove that `sin 2A+sin 2B+sin 2C=4 sinA sin B sinC.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C =pi , prove that sin 2A+sin 2B+sin 2C=4 sin Asin B sin C.

If A + B + C = pi , prove that sin 2A + sin 2B + sin 2C= 4 sin A sin B sin C

If A+B+C=pi , prove that : sin2A+sin2B+sin2C=4sinA sinB sinC

If A+B+C=pi , prove that : sin2A+sin2B+sin2C=4sinA sinB sinC

If A+B+C=pi , prove that sin 2A+sin 2B-sin 2C=4 cos A cos B sin C

Prove that sin2A + sin2B + sin2C = 4sinA · sinB · sin C

Prove that sin2A + sin2B + sin2C = 4sinA · sinB · sin C

If A+B+C=pi , prove that sin 2A-sin 2B+sin 2C=4cos Asin B cos C.

If A+B+C=pi , Prove that sin2A+sin2B+sin2C=4sinA.sinB.sinC

If A+B+C=pi , prove that : (sin 2A+sin 2B + sin 2C)/(sinA+sinB+sinC) = 8 sin(A/2) sin(B/2) sin(C/2)