Home
Class 11
MATHS
cos alpha sin (beta-gamma) + cos beta si...

`cos alpha sin (beta-gamma) + cos beta sin (gamma-alpha) + cos gamma sin (alpha-beta)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

cos alpha sin (beta-gamma)+cos betasin (gamma-alpha+cos gamma sin (alpha-beta)=

cos (alpha + beta + gamma ) + cos (alpha - beta - gamma) + cos ( beta - gamma - alpha ) + cos ( gamma - alpha - beta )=

If origin is the orthocentre of the triangle with vertices A(cos alpha,sin alpha),B(cos beta,sin beta),C(cos gamma,sin gamma) then cos(2 alpha-beta-gamma)+cos(2 beta-gamma-alpha)+cos(2 gamma-alpha-beta)=

sin (beta+ gamma- alpha) + sin (gamma+ alpha - beta) + sin (alpha + beta- gamma)- sin (alpha + beta + gamma)=

sin (beta+ gamma- alpha) + sin (gamma+ alpha - beta) + sin (alpha + beta- gamma)- sin (alpha + beta + gamma)=

If alpha, beta , gamma do not differ by a multiple of a pi and if ( cos (alpha + theta))/( sin (beta + gamma)) = (cos (bega + theta))/( sin (gamma + alpha )) = (cos (gamma + theta))/( sin (alpha + beta)) = k. Then k equals

If Delta = det [[sin alpha, cos alpha, sin alpha + cos alphasin beta, cos alpha, sin beta + cos betasin gamma, cos alpha, sin gamma + cos beta]] then Delta

cos (alpha + beta) cos gamma-cos (beta + gamma) cos alpha = sin beta sin (gamma-alpha)