Home
Class 12
MATHS
If (1+i)z=(1-i)barz, then z is equal to...

If `(1+i)z=(1-i)barz`, then z is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If (1+i)z=(1-i) barz , then show that z=-i barz dot

If (1+i)z = (1-i)barz, "then show that "z = -ibarz.

If (1+i)z = (1-i)barz, "then show that "z = -ibarz.

If z_(1)=9y^(2)-4-10ix , z_(2)=8y^(2)+20i , where z_(1)=barz_(2) , then z=x+iy is equal to

If z=((1+i)/(1-i)), then z^4 equals to

If Z is a complex number the radius of z bar z - ( 2+3i)z - (2-3i)barz + 9 =0 is equal to

If z_1=9y^2-4-10ix,z_2=8y^2-20i where z_1=barz_2 then z=x+iy is equal to

If z=(i) ^((i) ^(i)) where i= sqrt (−1) ​ , then z is equal to

if z = ((1+i)/(1-i)) then z^(2) equals

If z=i^(i) where i=sqrt(-)1 then |z| is equal to