Home
Class 12
MATHS
If |z|=k and omega=(z-k)/(z+k), then Re(...

If `|z|=k` and `omega=(z-k)/(z+k)`, then Re`(omega)`=

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z|=k and w=(z-k)/(z+k) , then Re (w)=

If |z|=1 and omega=(z-1)/(z+1) (where z in -1 ), then Re (omega) is

If |z|=1 and w=(z-1)/(z+1) (where z!=-1), then Re(w) is 0(b)(1)/(|z+1|^(2))|(1)/(z+1)|,(1)/(|z+1|^(2))(d)(sqrt(2))/(|z|1|^(2))

If |z|=1 and w=(z-1)/(z+1) (where z!=-1) then Re(w) is (A) 0(B)-(1)/(|z+1|^(2))(C)|(z)/(z+1)|(1)/(|z+1|^(2))(D)(sqrt(2))/(|z+1|^(2))

If |z| =5 and w= (z-5)/(z+5) the the Re (w) is equal to

If |z|=1 and w=(z-1)/(z+1) (where z ne -1 ), then Re (w) is :

If k>0 , |z|=|w|=k , and alpha=(z-bar w)/(k^2+zbar(w)) , then Re(alpha) (A) 0 (B) k/2 (C) k (D) None of these

If k>0 , |z|=|w|=k , and alpha=(z-bar w)/(k^2+zbar(w)) , then Re(alpha) (A) 0 (B) k/2 (C) k (D) None of these

Let w ne pm 1 be a complex number. If |w|=1" and "z=(w-1)/(w+1) , then Re(z) is equal to

If |z-1|=|z-5| and Re(z)=k ; then evaluate k