Home
Class 12
MATHS
Let two numbers have arithmetic mean 9 a...

Let two numbers have arithmetic mean 9 and geometric mean 4. Then these numbers are theroots o the equation (A) `x^2+18x+16=0` (B) `x^2-18x+16=0` (C) `x^2+18x-16=0` (D) `x^2-18x-16=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let two numbers have arithmatic mean 9 and geometric mean 4.Then these numbers are roots of the equation (a) x^2+18x+16=0 (b) x^2-18x-16=0 (c) x^2+18x-16=0 (d) x^2-18x+16=0

Let two numbers have arithmatic mean 9and geometric mean 4 .Then these numbers are roots of the equation (a) x^(2)+18x+16=0 (b) x^(2)-18x-16=0 (c) x^(2)+18x-16=0( d) x^(2)-18x+16=0

solve the equation x^(2) - 18x + 45 = 0

The number of integral roots of the equation x ^(8) -24x ^(7) -18x ^(5) +39x ^(2) +1155=0 is:

The number of integral roots of the equation x ^(8) -24x ^(7) -18x ^(5) +39x ^(2) +1155=0 is:

The number of integral roots of the equation x ^(8) -24x ^(7) -18x ^(5) +39x ^(2) +1155=0 is:

Find the nature of the roots of the equations of given below : (a) x^(2) - 13x + 11 =0 (b ) 18x^(2) - 14x + 17 = 0 (c ) 9x^(2) - 36x + 36 = 0 (d) 3x^(2) - 5x - 8 = 0

If x=9 is the chord of contact of the hyperbola x^2-y^2=9 then the equation of the corresponding pair of tangents is (A) 9x^2-8y^2+18x-9=0 (B) 9x^2-8y^2-18x+9=0 (C) 9x^2-8y^2-18x-9=0 (D) 9x^2-8y^2+18x+9=0

If x=9 is the chord of contact of the hyperbola x^2-y^2=9 then the equation of the corresponding pair of tangents is (A) 9x^2-8y^2+18x-9=0 (B) 9x^2-8y^2-18x+9=0 (C) 9x^2-8y^2-18x-9=0 (D) 9x^2-8y^2+18x+9=0

If x=9 is the chord of contact of the hyperbola x^2-y^2=9 then the equation of the corresponding pair of tangents is (A) 9x^2-8y^2+18x-9=0 (B) 9x^2-8y^2-18x+9=0 (C) 9x^2-8y^2-18x-9=0 (D) 9x^2-8y^2+18x+9=0