Home
Class 12
MATHS
In a triangle ABC, (cosB+cosC)/(1-cosA)=...

In a triangle ABC, `(cosB+cosC)/(1-cosA)`=

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that in a triangle ABC, (cosB-cosC)/(cosA+1) =(c-b)/a

In any triangle ABC, if (cosB+ 2 cosA)/(cos B + 2cosC ) = (sin C)/(sinA) then prove that, the triangle is either isosceles or right angled.

If in a triangle ABC, (cosA)/a=(cosB)/b=(cosC)/c ,then the triangle is

If in a triangle ABC, (cosA)/a=(cosB)/b=(cosC)/c ,then the triangle is

If in a triangle ABC, (cosA)/a=(cosB)/b=(cosC)/c ,then the triangle is

In a triangle ABC, if (cosA)/a=(cosB)/b=(cosC)/c and the side a =2 , then area of triangle is

In a triangle ABC, if (cosA)/a=(cosB)/b=(cosC)/c and the side a =2 , then area of triangle is

In a triangle ABC, cosecA (sinB cosC + cosB sinC) is :

If in a triangle ABC,(1+cosA)/(a)+(1+cosB)/(b)+(1+cosC)/(c)=(k^(2)(1+cosA)(1+cosB)(1+cosC))/(abc) then k is equal to

If in a triangle ABC , 2(cosA)/a+(cosB)/b+2(cosC)/c=a/(bc)+b/(ca) , then the value of the angle A, is