Home
Class 12
MATHS
The value of a so that the volume of ...

The value of `a` so that the volume of parallelepiped formed by ` hat i+a hat j+ hat k , hat j+a hat ka n da hat i+ hat k` is minimum is `-3` b. `3` c. `1//sqrt(3)` d. `sqrt(3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of a so that the volume of parallelepiped formed by hat i+a hat j+ hat k , hat j+a hat k and a hat i+ hat k is minimum is a. -3 b. 3 c. 1//sqrt(3) d. sqrt(3)

The value of a so that the volume of parallelepiped formed by hat i+a hat j+ hat k , hat j+a hat k and a hat i+ hat k is minimum is a. -3 b. 3 c. 1//sqrt(3) d. sqrt(3)

Find the value of a so that the volume of the parallelepiped formed by vectors hat i+a hat j+k , hat j+a hat ka n da hat i+ hat k becomes minimum.

Find the value of a so that the volume of the parallelepiped formed by vectors hat i+a hat j+k , hat j+a hat ka n da hat i+ hat k becomes minimum.

The value of a so that the volume of parallelepiped formed by hat i+ahat j+hat k,hat j+ahat k and ahat i+hat k is minimum is -3 b.3 c.1/sqrt(3)d.sqrt(3)

Find the value of a so that the volume of the parallelepiped formed by vectors hat i+a hat j+k , hat j+a hat k and a hat i+ hat k becomes minimum.

Find the volume of a parallelepiped whose edges are given by -3 hat i+7 hat j-5 hat k ,-5 hat i+7 hat j- 3 hat ka n d7 hat i-5 hat j-3 hat kdot

Prove that the following vectors are coplanar: hat i+ hat j+ hat k ,\ 2 hat i+3 hat j- hat k\ a n d- hat i-2 hat j+2 hat k

Show that the area of a parallelogram having diagonals 3 hat i+ hat j-2 hat k\ a n d\ hat i-3 hat j+4 hat k is 5sqrt(3) square units.