Home
Class 12
MATHS
Show that tan^(-1)[(acos x-bsin x)/(b co...

Show that `tan^(-1)[(acos x-bsin x)/(b cos x+a sin x)]= tan^(-1)(a/b)-x" when "(a)/(b)tan^(-1)x gt -1`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Tan ^(-1) ((a cos x -b sin x)/( b cos x + a sin x ))

Simplify tan^(-1)[(a cos x-b sin x)/(b cos x+a sin x)], if (a)/(b)tan x>-1

Simplify tan ^(-1)[(a cos x-b sin x)/(b cos x+a sin x)] if, a/b tan xgt(-1)

If y = tan^(-1) ((a cos x - b sin x)/(b cos x + a sin x)) " then " (dy)/(dx) = ?

y=tan^(-1)((a cos x-b sin x)/(b cos x+a sin x)), where -(pi)/(2) -1

Simplify tan^(-1) [(a cos x -b sin x)/(b cos x +a sin x)] , if (a)/(b) tan x gt -1 .

(b) tan^(-1)((1-cos x)/(sin x))