Home
Class 12
MATHS
If |z|=1a n dz!=+-1, then all the values...

If `|z|=1a n dz!=+-1,` then all the values of `z/(1-z^2)` lie on a line not passing through the origin `|z|=sqrt(2)` the x-axis (d) the y-axis

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z|=1a n dz!=+-1, then all the values of z/(1-z^2) lie on (a)a line not passing through the origin (b) |z|=sqrt(2) (c)the x-axis (d) the y-axis

If |z|=1a n dz!=+-1, then all the values of z/(1-z^2) lie on (a)a line not passing through the origin (b) |z|=sqrt(2) (c)the x-axis (d) the y-axis

If |z|=1andz!=+-1, then all the values of (z)/(1-z^(2)) lie on (a)a line not passing through the origin (b) |z|=sqrt(2)( c)the x -axis (d) the y- axis

If |z|=1 and z!=+-1, then all the values of z/(1-z^2) lie on

If |z|=1 and z!=1, then all the values of z/(1-z^2) lie on

If absz=1 and z ne+-1 then all the values of z/(1-z^2) lie on

If |z|=1 and z ne pm 1 , then all the values of (z)/(1-z^(2)) lie on

If z!=1 and (z^2)/(z-1) is real, then the point represented by the complex number z lies (1) either on the real axis or on a circle passing through the origin (2) on a circle with centre at the origin (3) either on the real axis or on a circle not passing through the origin (4) on the imaginary axis