Home
Class 12
MATHS
If (A+B)^(2)=A^(2)+B^(2) and |A| ne 0 , ...

If `(A+B)^(2)=A^(2)+B^(2)` and `|A| ne 0` , then `|B|=` (where `A` and `B` are matrices of odd order)

Promotional Banner

Similar Questions

Explore conceptually related problems

If A + B = C , where A and B are matrices of order 2 xx 3 , then order of C is :

If AneB, AB = BA and A^(2)=B^(2) , then the value of the determinant of matrix A+B is (where A and B are square matrices of order 3xx3 )

If AneB, AB = BA and A^(2)=B^(2) , then the value of the determinant of matrix A+B is (where A and B are square matrices of order 3xx3 )

If A and B are square matrices of order 2, then (A+B)^(2)=

If A andB are square matrices of order 2, then (A+B)^(2) =

If a=b^2c , where a ne 0 and b ne 0 , then b/c =

If A and B are square matrics of the same order then (A+B)^2=?

If A and B are square matrics of the same order then (A-B)^2=?

If A B=A and B A=B , where A and B are square matrices, then B^2=B and A^2=A (b) B^2!=B and A^2=A (c) A^2!=A , B^2=B (d) A^2!=A , B^2!=B