Home
Class 11
MATHS
If alphaa n dbeta are the solutions of t...

If `alphaa n dbeta` are the solutions of the equation `at a ntheta+bs e ctheta=c ,` then show that `tan(alpha+beta)=(2a c)/(a^2-c^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha a n d beta are the solutions of the equation at a ntheta+bs e ctheta=c , then show that tan(alpha+beta)=(2a c)/(a^2-c^2)

If alpha and beta are the solution of the equation a tan theta +b sec theta=c ,then show that tan(alpha+beta)=2ac/(a^2-c^2)

If alpha and beta are the solutions of the equation a tan theta+b sec theta=c, then show that tan(alpha+beta)=(2ac)/(a^(2)-c^(2))

If alpha, beta are the solutions of the equation a tantheta+b sectheta=c then show that tan(alpha+beta)=(2ac)/(a^2-c^2 .

If alpha and beta are the solution of the equation,a tan theta+b sec theta=c then show that tan(alpha+beta)=(2ac)/(a^(2)-c^(2))

If alpha and beta are the solution of the equation a sec theta+b tan theta=c then show that tan(alpha+beta)=(2bc)/(b^(2)-c^(2))

If alpha, beta be the solutions of theta for the equation a tan theta + b sec theta = c then prove that tan(alpha+ beta) = 2ac/(a^(2)-c^(2)) .

If alpha and beta are distinct roots of the equation : a tan theta+b sec theta=c , prove that tan (alpha+ beta)= (2ac)/(a^2-c^2) .

If alphaa n dbeta are the solutions of acostheta+bsintheta=c , then show that "cos"(alpha+beta)=(a^2-b^2)/(a^2+b^2) (ii) cos(alpha-beta)=(2c^2-(a^2+b^2))/(a^2+b^2)