Home
Class 12
MATHS
If c^(2) ne ab and the roots of (c^(2)-a...

If `c^(2) ne ab` and the roots of `(c^(2)-ab)x^(2)-2(a^(2)-bc)x+(b^(2)-ac)=0` are equal, then show that `a^(3)+b^(3)+c^(3)=3abc" or "a=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If c^(2) != ab and the roots of (c^(2)-ab)x^(2)-2(a^(2)-bc)x+(b^(2)-ac)+0 are equal show that a^(3)+b^(3)+c^(3)=3abc (or) a = 0.

If the roots of the equation (c^(2)-ab)x^(2)-2(a^(2)-bc)x+b^(2)-ac=0 in x are equal, show that either a=0 or a^(3)+b^(3)+c^(3)=3abc .

If the roots of the equation (c^(2)-ab)x^(2)-2(a^(2)-bc)x+b^(2)-ac=0 are equal,prove that either a=0 or a^(3)+b^(3)+c^(3)=3abc

Show that the roots of the equation (a^(2)-bc)x^(2)+2(b^(2)-ac)x+c^(2)-ab=0 are equal if either b=0 or a^(3)+b^(3)+c^(3)-3acb=0

Show that the roots of the equation (a^(2)-bc)x^(2)+2(b^(2)-ac)x+c^(2)-ab=0 are equal if either b=0 or a^(3)+b^(3)+c^(3)-3acb=0

Show that the roots of the equation (a^(2)-bc)x^(2)+2(b^(2)-ac)x+c^(2)-ab=0 are equal if either b=0 or a^(3)+b^(3)+c^(3)-3acb=0

Show that the roots of the equation (a^(2)-bc)x^(2)+2(b^(2)-ac)x+c^(2)-ab=0 are equal if either b=0 or a^(3)+b^(3)+c^(3)-3acb=0

If the roots of the equation (c^(2)-ab)x^(3)-2(a^(2)-bc)x+b^(2)-ac=0 are real and equal prove that either a=0 (or) a^(3)+b^(3)+c^(3)=3"abc" .