Home
Class 12
MATHS
Letf:[1,oo)->R andf(x)=x(int1^xe^t/tdt)-...

Let`f:[1,oo)->R` and`f(x)=x(int_1^xe^t/tdt)-e^x`.Then (a) f(x) is an increasing function (b)` lim_(x->oo)f(x)->oo` (c) `fprime(x)` has a maxima at x=e (d) f(x) is a decreasing function

Promotional Banner

Similar Questions

Explore conceptually related problems

L e tf:[1,oo)->Ra n df(x)=int_1^x(e^t)/t dt-e^xdotT h e n f(x) is an increasing function lim_(x->oo)f(x)->oo f^(prime)(x) has a maxima at x=e f(x) is a decreasing function

Let f:[1,oo)rarr R and f(x)=x(int_(1)^(x)(e^(t))/(t)dt)-e^(x). Then (a) f(x) is an increasing function (b) lim_(x rarr oo)f(x)rarr oo(c)f'(x) has a maxima at x=e (d) f(x) is a decreasing function

Let f be the function f(x)=cosx-(1-(x^2)/2)dot Then (a) f(x) is an increasing function in (0,oo) (b) f(x) is a decreasing function in (-oo,oo) (c) f(x) is an increasing function in (-oo,oo) (d) f(x) is a decreasing function in (-oo,0)

Let f be the function f(x)=cosx-(1-(x^2)/2)dot Then (a) f(x) is an increasing function in (0,oo) (b) f(x) is a decreasing function in (-oo,oo) (c) f(x) is an increasing function in (-oo,oo) (d) f(x) is a decreasing function in (-oo,0)

Let f be the function f(x)=cosx-(1-(x^2)/2)dot Then f(x) is an increasing function in (0,oo) f(x) is a decreasing function in (-oo,oo) f(x) is an increasing function in (-oo,oo) f(x) is a decreasing function in (-oo,0)

Let f be the function f(x)=cos x-(1-(x^(2))/(2))* Then f(x) is an increasing function in (0,oo)f(x) is a decreasing function in (-oo,oo)f(x) is an increasing function in (-oo,oo)f(x) is a decreasing function in (-oo,0)

If f(x) = x^(3) + bx^(2) + cx + d and 0 lt b^(2) lt c , then in (-oo, oo) , a)f(x) is a strictly increasing function b)f(x) has local maxima c)f(x) is a strictly decreasing function d)f(x) is bounded

Let f:(0,oo)vec R be given by f(x)=int_((1)/(x))^(x)(e^(-(t+(1)/(t)))dt)/(t), then (a)f(x) is monotonically increasing on [1,oo)(b)f(x) is monotonically decreasing on (1,oo)(b)f(x) is an odd function of x on R

Let f:R to R be a positive increasing function with lim_(x to oo) (f(3x))/(f(x))=1 . Then lim_(x to oo) (f(2x))/(f(x))=