Home
Class 12
MATHS
If Z1.Z2,.....Zn lie on the circle |z|=2...

If `Z_1.Z_2,.....Z_n` lie on the circle `|z|=2` then the value of `|z_1+z_2+....+z_n|-4|1/(z_1)+1/(z_2)+....+1/(z_n)|=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the complex numbers z_1, z_2,.......z_n lie on te unit circle |z| = 1 then show that |z_1 + z_2 + ..... + z_n| = |z_1^(-1)1 + z_2^(-1) + ....... + z_n^(-1)|.

If z_(1),z_(2),……………,z_(n) lie on the circle |z|=R , then |z_(1)+z_(2)+…………….+z_(n)|-R^(2)|1/z_(1)+1/z_(2)+…….+1/z-(n)| is equal to

If z_(1),z_(2),……………,z_(n) lie on the circle |z|=R , then |z_(1)+z_(2)+…………….+z_(n)|-R^(2)|1/z_(1)+1/z_(2)+…….+1/z-(n)| is equal to

If ,Z_1,Z_2,Z_3,........Z_(n-1) are n^(th) roots of unity then the value of 1/(3-Z_1)+1/(3-Z_2)+..........+1/(3-Z_(n-1)) is equal to

If ,Z_1,Z_2,Z_3,........Z_(n-1) are n^(th) roots of unity then the value of 1/(3-Z_1)+1/(3-Z_2)+..........+1/(3-Z_(n-1)) is equal to

If |z_1|=|z_2|=1, then prove that |z_1+z_2| = |1/z_1+1/z_2∣

If |z_1|=|z_2|=1, then prove that |z_1+z_2| = |1/z_1+1/z_2∣

If 1,Z_1,Z_2,Z_3,........Z_(n-1) are n^(th) roots of unity then the value of 1/(3-Z_1)+1/(3-Z_2)+..........+1/(3-Z_(n-1)) is equal to

If 1,Z_1,Z_2,Z_3,........Z_(n-1) are n^(th) roots of unity then the value of 1/(3-Z_1)+1/(3-Z_2)+..........+1/(3-Z_(n-1)) is equal to

If abs(z_1)=abs(z_2)=….....=abs(z_n) = 1 then the value of abs(z_1+z_2+z_3+…....+z_n) =