Home
Class 12
MATHS
If S is the circumcentre, G the centroid...

If S is the circumcentre, G the centroid, O the orthocentre of `Delta` ABC, then `vec(S)A + vec(S)B + vec(S)C =`

Promotional Banner

Similar Questions

Explore conceptually related problems

If S is the cirucmcentre, G the centroid, O the orthocentre of a triangle ABC, then vec(SA) + vec(SB) + vec(SC) is:

If S is the cirucmcentre, G the centroid, O the orthocentre of a triangle ABC, then vec(SA) + vec(SB) + vec(SC) is:

If S is the circumcentre, O is the orthocentre of Delta ABC then vec(O)A + vec(O)B + vec(O)C =

If G is the centroid of Delta ABC then vec(G)A + vec(G)B + vec(G)C =

If O is the circumcentre and P the orthocentre of Delta ABC , prove that vec(OA)+ vec(OB) + vec(OC) =vec(OP) .

If O is the circumcentre, G is the centroid and O' is orthocentre or triangle ABC then prove that: vec(OA) +vec(OB)+vec(OC)=vec(OO')

If S is circumcentre, O is orthocentre of DeltaABC , then vec(SA)+vec(SB)+vec(SC) =

If O is the circumcentre,G is the centroid and O' is orthocentre or triangle ABC then prove that: vec OA+vec OB+vec OC=vec OO