Home
Class 9
MATHS
In the adjoining figure, ABCD is a squar...

In the adjoining figure, ABCD is a square and PAB is an equilateral triangle. Find :
(i) `angleAPD`
(ii) `anglePDC`
(iii) `angleDPC`
(iv) Prove that `DP = CP`

Promotional Banner

Similar Questions

Explore conceptually related problems

In the given figure, ABCD is a square and DeltaBCT is an equilateral triangle. Find /_BTD .

In the figure below, ABCD is a square , MDC is an equilateral triangle. Find the value of x.

ABCD is a square and DEC is an equilateral triangle. Prove that AE = BE.

ABCD is a square and DEC is an equilateral triangle. Prove that AE = BE.

In the adjoining figure, ABCD is a rhombus and ABE is an equilateral triangle. If angleBCD=70^(@), find (a)angleADE" "(b)angleBDE" "(c)angleBED

In the adjoining figure, ABCD is a rhombus and ABE is an equilateral triangle. If angleBCD=70^(@), find (a)angleADE" "(b)angleBDE" "(c)angleBED

Find the perimeter of the given figure : BCDE is a square and ABC is an equilateral triangle.

The given figure shows a square ABCD and an equilateral triangle ABP. Calculate : (i) angleAOB (ii) angleBPC (iii) anglePCD (iv) reflex angleAPC

In the adjacent figure ABCD is a square and Delta APB is an equilateral triangle. Prove that DeltaAPD ~= DeltaBPC .