Home
Class 11
MATHS
If z=r e^(itheta) , then prove that |e^...

If `z=r e^(itheta)` , then prove that `|e^(i z)|=e^(-r sintheta)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If z=r e^(itheta) , then prove that |e^(i z)|=e^(-r s inthetadot)

If z=re^(i theta), then prove that |e^(iz)|=e^(-r sin theta)

If z = re^(itheta) , then abs(e^(iz)) =

If z= 5e^(itheta), then |e^(iz)| is equal to

If z=re^(itheta) then |e^(iz)| is equal to:

If z=(a+i b)^5+(b+i a)^5 , then prove that R e(z)=I m(z),w h e r ea ,b in Rdot

If z= re^(i theta ) , " then " |e^(iz) | is equal to a)1 b) e^(2r) sin theta c) e^( r sin theta) d) e^(-r sin theta)

z = r(Costheta + i Sintheta) = r e^(itheta), bar z = r(Costheta - i Sintheta) = r e^(-itheta) find (z/bar z + bar z/z)