Home
Class 12
MATHS
Let f be a real valued function satisfyi...

Let f be a real valued function satisfying
` f(x+y)=f(x)f(y)` for all ` x, y in R ` such that `f(1)=2 `.
Then , `sum_(k=1)^(n) f(k)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f be a real valued function satisfying f(x+y)=f(x)f(y) for all x, y in R such that f(1)=2 . If sum_(k=1)^(n)f(a+k)=16(2^(n)-1) , then a=

Let f be a real valued function satisfying f(x+y)=f(x)f(y) for all x, y in R such that f(1)=2 . If sum_(k=1)^(n)f(a+k)=16(2^(n)-1) , then a=

Let f be a real valued function, satisfying f (x+y) =f (x) f (y) for all a,y in R Such that, f (1) =a. Then , f (x) =

Let f be a real valued function, satisfying f (x+y) =f (x) f (y) for all a,y in R Such that, f (1_ =a. Then , f (x) =

Let f be a real valued function satisfying f(x+y)=f(x)+f(y) for all x, y in R and f(1)=2 . Then sum_(k=1)^(n)f(k)=

Let f be a real valued function satisfying f(x+y)=f(x)+f(y) for all x, y in R and f(1)=2 . Then sum_(k=1)^(n)f(k)=

f(x) is a real valued function, satisfying f(x+y)+f(x-y)=2f(x).f(y) for all yinR , Then

f(x) is real valued function, satisfying f(x+y)+f(x-y)=2f(X),f(y) for all y ne R , then

If a real valued function f(x) satisfies the equation f(x +y)=f(x)+f (y) for all x,y in R then f(x) is

If a real valued function f(x) satisfies the equation f(x+y)=f(x)+f(y) for all x,y in R then f(x) is