Home
Class 12
MATHS
If f: Rrarr[0,oo)is a function such that...

If `f: Rrarr[0,oo)`is a function such that `f(x-1)+f(x+1)=sqrt(3)f(x),` then prove that `f(x)` is periodic and find its period.

Promotional Banner

Similar Questions

Explore conceptually related problems

If f:R rarr[0,oo) is a function such that f(x-1)+f(x+1)=sqrt(3)f(x), then prove that f(x) is periodic and find its period.

If f: Rrarr[0,oo) is a function such that f(x-1)+f(x+1)=sqrt(3)f(x), then find its period.

If f: R rarr [0, oo) is a function such that f(x-1)+f(x+1)=sqrt(3)f(x) , and f(x) is periodic then its period is

If f(x+2a)=f(x-2a) ,then prove that f(x) is periodic

If f(x+2a)=f(x-2a), then prove that f(x) is periodic.

If f: R to [0,∞) be a function such that f(x -1) + f(x + 1) = sqrt3(f(x)) then prove that f(x + 12) = f(x) .

If a function satisfies f(x+1)+f(x-1)=sqrt(2)f(x) , then period of f(x) can be

If a function satisfies f(x+1)+f(x-1)=sqrt(2)f(x) , then period of f(x) can be

If a function satisfies f(x+1)+f(x-1)=sqrt(2)f(x) , then period of f(x) can be

If a function satisfies f(x+1)+f(x-1)=sqrt(2)f(x) , then period of f(x) can be