Home
Class 12
MATHS
If, in a /\ABC, it is given that, a^(4...

If, in a `/_\ABC`, it is given that,
`a^(4) + b^(4) + c^(4) = 2a^(2) (b^(2) + c^2)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If, in Delta ABC, a^(4) + b^(4) + c^(4) = 2a^(2)(b^(2) + c^(2)) then : m/_A = ...

In an acute angled Delta ABC , if a^(4) + b^(4) +c^(4) = 2c^(2) (a^(2) + b^(2)) then the angle C is

If a + b + c = 0 , prove that a^(4) + b^(4) + c^(4) = 2(b^(2)c^(2)+c^(2)a^(2)+a^(2)b^(2)) = 1//2 (a^(2) + b^(2) + c^(2))^(2)

In triangle ABC if a^(4) + b^(4) + c^(4) = 2a^(2)b^(2) + 2b^(2)c^(2) then the values of B will be-

(i) If in a triangle ABC, a^(4) + b^(4) +c^(4) - 2b^(2) c^(2) -2c^(2)a^(2)=0 , then show that, C=45^(@) or 135^(@) . (ii) In in a triangle ABC, sin^(4)A + sin^(4)B + sin^(4)C = sin^(2)B sin^(2)C + 2sin^(2) C sin^(2)A + 2sin^(2)A sin^(2)B , show that, one of the angles of the triangle is 30^(@) or 150^(@)

If a, b, c are the sides of the triangle ABC such that a^(4) +b^(4) +c^(4)=2c^(2) (a^(2)+b^(2)), then the angle opposite to the side c is-

In a Delta ABC, a ^(4)+b^(4) + c^(4) = 2b^(2)c^(2)+2a^(2)b^(2), " then B"=

If a, b, c are the sides of the triangle ABC such that a^(4) +b^(4) +c^(4)=2x^(2) (a^(2)+b^(2)), then the angle opposite to the side c is-