Home
Class 12
MATHS
Let A=[(1,0,0),(1,1,0),(1,1,1)] and B=A^...

Let `A=[(1,0,0),(1,1,0),(1,1,1)]` and `B=A^20` . Then the sum of the elements of the first column of B is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let A = [[1,0,0],[0,1,1],[1,1,1]] and B=A^20. Then the sum of the elements of the first column of B is :

If A = [(1,1,1),(0,1,1),(0,0,1)] and M = A + A^(2) + A^(3) + . . . . + A^(20) then the sum of all the elements of the matrix M is equal to _____

If A[(1,2,2),(-2,-1,-1),(1,-4,-4)] , then the sum of the elements of A^(-1) is...a)0 b)1 c)-1 d) Cannot be found

If A=[[1,0,0],[0,1,0],[a,b,-1]] and A=A^(-1) then a+b=?

If A=[(3,-1),(2,0)] and B=[(2,-5),(3,1)] then sum of diagonal elements of (A+B) is

Let A=[(5,0),(-1,0)] and B=[(0,1),(-1,0)] If 4A+5B-C=0 then C is

Let A=[(5,0),(-1,0)] and B=[(0,1),(-1,0)] If 4A+5B-C=0 then C is

A=[(1,1,1),(0,1,1),(0,0,1)] , then sum of all elements in A+A^2+A^3+ . . . + A^(26) is

Let A=((1,0,-1),(0,2,2),(1,1,3)). If B=adj A,C=A^-1 and N=(|adj B|)/(|c|) then the sum of all the division of 'N' which are divisible by 6 is