Home
Class 12
MATHS
if |z-1|=|z-i| then locus of z is...

if `|z-1|=|z-i|` then locus of z is

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z-1|=|z-3| then the locus of z is

Match the following {:(I.,"If |z-3+i|=4 then the locus of z is ","a)"x^2+y^2-6x+2y-6=0),(II.,"If |z-1|=2|z-3|then the locus of z is","b)"3x^2+3y^2-22x+35=0),(III.,"If |z-i|=|z+i|then the locus of z is","c)"y=0),(IV.,"If "|z-1|^2+|z+1|^2=4"then the locus of z is","d)"x^2+y^2=1):}

If |z-1|=2 then the locus of z is

If |z-1| = 2 then the locus of z is

If |z-2i|+|z-2|>=||z|-|z-2-2i|| then locus of z is

If |z-5i|=|z+5i, then the locus of z

If |z+i|^2-|z-i|^2=3 then the locus of z is

If |z-z_(1)|=|z-z_(2)| then the locus of z is :

If |z-3+i|=4 , then the locus of z is

If |z+2+3i|=5 then the locus of z is