Home
Class 12
MATHS
If the lines a x+y+1=0,x+b y+1=0a n dx+y...

If the lines `a x+y+1=0,x+b y+1=0a n dx+y+c=0(a ,b ,c` being distinct and different from `1)` are concurrent, then prove that `1/(1-a)+1/(1-b)+1/(1-c)=1.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the lines a x+y+1=0,x+b y+1=0 and x+y+c=0(a ,b ,c being distinct and different from 1) are concurrent, then prove that 1/(1-a)+1/(1-b)+1/(1-c)=1.

If the lines a x+y+1=0,x+b y+1=0 and x+y+c=0(a ,b ,c being distinct and different from 1) are concurrent, then prove that 1/(1-a)+1/(1-b)+1/(1-c)=1.

If the lines a x+y+1=0,x+b y+1=0 and x+y+c=0(a ,b ,c being distinct and different from 1) are concurrent, then prove that 1/(1-a)+1/(1-b)+1/(1-c)=1.

If the lines ax+y+1=0,x+by+1=0 and x+y+c=0(a,b, being distinct and different from 1) are concurrent,then prove that (1)/(1-a)+(1)/(1-b)+(1)/(1-c)=1

If the lines a x+y+1=0,x+b y+1=0, and x+y+c=0(a , b , c being distinct and different from 1) are concurrent, then (1/(1-a))+(1/(1-b))+(1/(1-c))= (a)0 (b) 1 (c) 1/((a+b+c)) (d) none of these

If the lines a x+y+1=0,x+b y+1=0, and x+y+c=0(a , b , c being distinct and different from 1) are concurrent, then (1/(1-a))+(1/(1-b))+(1/(1-c)) is (a) 0 (b) 1 1/((a+b+c)) (d) none of these

If the lines ax+y+1=0 , x+by+1=0 and x+y+c=0 , ( a , b , c being distinct and different from 1 ) are concurrent, then 1/(1-a)+1/(1-b)+1/(1-c)= (A)    0    (B)    1    (C)    1/(a+b+c)    (D)   None of these

If the lines ax+y+1=0 , x+by+1=0 and x+y+c=0 , ( a , b , c being distinct and different from 1 ) are concurrent, then 1/(1-a)+1/(1-b)+1/(1-c)= (A)    0    (B)    1    (C)    1/(a+b+c)    (D)   None of these

If the lines ax+y+1=0, x+by+1=0 and x+y+c=0 (a,b and c being distinct and different from 1) are concurrent the value of 1/(a-1)+1/(b-1)+1/(c-1) is

If the lines ax+y+1=0,x+by+1=0 and x+y+c=0(a,b,c being distinct and different from 1) are concurrent,then ((1)/(1-a))+((1)/(1-b))+((1)/(1-c))=0 (b) 1(1)/((a+b+c)), (d) none of these