Home
Class 12
MATHS
Let z(1) and z(2) be complex numbers suc...

Let `z_(1)` and `z_(2)` be complex numbers such that `z_(1)^(2)-4z_(2)=16+20i` and the roots `alpha` and `beta` of `x^(2)+z_(1)x+z_(2)+m=0` for some complex number `m` satisfies `|alpha-beta|=2sqrt(7)`.
The locus of the complex number `m` is a curve

Promotional Banner

Similar Questions

Explore conceptually related problems

Let z_(1) and z_(2) be complex numbers such that z_(1)^(2)-4z_(2)=16+20i and the roots alpha and beta of x^(2)+z_(1)x+z_(2)+m=0 for some complex number m satisfies |alpha-beta|=2sqrt(7) . The value of |m| ,

Let z_(1) and z_(2) be complex numbers such that z_(1)^(2)-4z_(2)=16+20i and the roots alpha and beta of x^(2)+z_(1)x+z_(2)+m=0 for some complex number m satisfies |alpha-beta|=2sqrt(7) . The value of |m| ,

Let z_(1) and z_(2) be complex numbers such that z_(1)^(2)-4z_(2)=16+20i and the roots alpha and beta of x^(2)+z_(1)x+z_(2)+m=0 for some complex number m satisfies |alpha-beta|=2sqrt(7) . The maximum value of |m| is

Let z_(1) and z_(2) be complex numbers such that z_(1)^(2)-4z_(2)=16+20i and the roots alpha and beta of x^(2)+z_(1)x+z_(2)+m=0 for some complex number m satisfies |alpha-beta|=2sqrt(7) . The maximum value of |m| is

Let z_(1) and z_(2) be complex numbers such that z_(1)^(2)-4z_(2)=16+20i and the roots alpha and beta of x^(2)+z_(1)x+z_(2)+m=0 for some complex number m satisfies |alpha-beta|=2sqrt(7) . The value of |m| , when are(m) is maximum

Let z_1 and z_2 be complex numbers such that z_(1)^(2) - 4z_(2) = 16+20i and the roots alpha and beta of x^2 + z_(1) x +z_(2) + m=0 for some complex number m satisfies |alpha- beta|=2 sqrt(7) . The minimum value of |m| is

Let z_1 and z_2 be complex numbers such that z_(1)^(2) - 4z_(2) = 16+20i and the roots alpha and beta of x^2 + z_(1) x +z_(2) + m=0 for some complex number m satisfies |alpha- beta|=2 sqrt(7) . The minimum value of |m| is

Let z_(1),z_(2) be two complex numbers such that |z_(1)+z_(2)|=|z_(1)|+|z_(2)| . Then,

Let z_(1),z_(2) be two complex numbers such that |z_(1)+z_(2)|=|z_(1)|+|z_(2)| . Then,

Let z_(1) and z_(2) be two complex numbers such that |z_(1)+z_(2)|^(2)=|z_(1)|^(2)+|z_(2)|^(2) . Then,