Home
Class 12
MATHS
If |z1|=|z2|=.=|zn|=1, then the value of...

If `|z_1|=|z_2|=.=|z_n|=1,` then the value of `|z_1+z_2+z_3+..+z_n|` is equal to (A) 1 (B) `|z_1|+|z_2|+z_3|+…..+|z_n|` (C) `|1/z_1+1/z_2+1/z_3+……….+1/z_n|` (D) n

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z_1|=|z_2|=|z_3|=......=|z_n|=1 , then |z_1+z_2+z_3+......+z_n|=

If |z_(1)|=|z_(2)|=………….=|z-(n)|=1 , then the value of |z_(1)+z_(2)+………+z_(n)| , is

If |z_1|=|z_2|=|z_3|"…."=|z_n|=1 then |z_(1)+z_(2)+"….."+z_(n)|=

If |z_(1)|=|z_(2)|=…... .=|z_(n)|=1 then |z_(1)+z_(2)+ .+z_(n)|=

If |z_1|=|z_2|=|z_3|=1 then value of |z_1-z_3|^2+|z_3-z_1|^2+|z_1-z_2|^2 cannot exceed

If |z_1|=|z_2|=|z_3|=1 then value of |z_1-z_3|^2+|z_3-z_1|^2+|z_1-z_2|^2 cannot exceed

If |z_1|=|z_2|=|z_3|=1 then value of |z_1-z_3|^2+|z_3-z_1|^2+|z_1-z_2|^2 cannot exceed

If abs(z_1)=abs(z_2)=….....=abs(z_n) = 1 then the value of abs(z_1+z_2+z_3+…....+z_n) =

If z_(1), z_(2),……..,z_(n) are complex numbers such that |z_(1)| = |z_(2)| = …….. = |z_(n)| = 1 , then |z_(1) + z_(2) +……..+ z_(n)| is equal to a) |z_(1)z_(2)z_(3)…..z_(n)| b) |z_(1)|+|z_(2)|+…….+|z_(n)| c) |(1)/(z_(1)) + (1)/(z_(2)) + ……….+ (1)/(z_(n))| d)n