Home
Class 12
MATHS
If f(x)dx=g(x) and f^(-1)(x) is differen...

If `f(x)dx=g(x) and f^(-1)(x)` is differentiable, then `intf^(-1)(x)dx` equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If intf(x)dx=g(x)+c and f^(-1)(x) is differentiable, then intf^(-1)(x)dx equal to

If intf(x)dx=g(x), then : intf^(-1)(x)dx=

If intf(x)dx=g(x), then intf(x)g(x)dx is equal to

If intf(x)dx=g(x) , then intf(x)dx=

If intf(x)dx=g(x),then intx^(11)f(x^(6))dx is equal to

If f(x) and g(x) are differentiable function then show that f(x)+-g(x) are also differentiable such that d(f(x)+-g(x))/(dx)=d(f(x))/(dx)+-d(g(x))/(dx)

If intf(x)dx=f(x), then int{f(x)}^2dx is equal to

If intf(x)dx=f(x), then int{f(x)}^2dx is equal to