Home
Class 12
MATHS
If zk = e^(i theta) for k = 1, 2, 3, 4, ...

If `z_k = e^(i theta)` for `k = 1, 2, 3, 4,` where `i^2 = -1,` and if `|sum_(k=1)^4 1/z_k|= 1,` then `|sum_(k=1)^4 z_k|` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If z_(k)=e^(i theta_k) for k= 1, 2, 3, 4 where i^(2)= -1 , and if |sum_(k=1)^(4) (1)/(z_k)|=1 , then |sum_(k=1)^(4)| is equal to

The sum sum_(k=1)^(20) k (1)/(2^(k)) is equal to

The sum sum_(k=1)^(20) k (1)/(2^(k)) is equal to

The Sum sum_(K=1)^(20)K(1)/(2^(K)) is equal to.

The value of sum_(k=0)^(n)(i^(k)+i^(k+1)) , where i^(2)= -1 , is equal to

sum_(i=1)^(oo)sum_(j=1)^(oo)sum_(k=1)^(oo)(1)/(2^(i+j+k)) is equal to

Let S_k=underset(nrarrinfty)limsum_(i=0)^n1/(k+1)^i. Then sum_(k=1)^nkS_k equals

sum_(k=1)^(oo)sum_(r=1)^(k)1/(4^(k))(""^(k)C_(r)) is equal to=________

The sum sum_(k=1)^(100)(k)/(k^(4)+k^(2)+1) is equal to