Home
Class 12
MATHS
cos{cos^(-1)(-1/7)+sin^(-1)(-1/7)} =...

`cos{cos^(-1)(-1/7)+sin^(-1)(-1/7)}` =

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sin[cos^(-1)(-(1)/(7))+sin^(-1)(-(1)/(7))] is

(cos^(-1)(41/49))/(sin^(-1)(2/7))=

(cos^(-1)(41/49))/(sin^(-1)(2/7))

(Cos^(-1)(41//49))/(Sin^(-1)(2//7))=

Prove that cos^(-1) ((5)/(13))+cos^(-1) (-7/25)+sin^(-1) (36)/(325)=pi

cos^(-1)(sin((pi)/(7)))

(cos^(-1)(sin((7 pi)/6))

Evaluate each of the following: sin(sin^(-1)7/(25)) (ii) sin(cos^(-1)5/(13)) (iii) sin(tan^(-1)(24)/7)

If "sin"^(-1)1/x=2tan^(-1)(1/7)+cos^(-1)(3/5) , then x = _____

Statement-1: cosec^(-1)(3)/(2)+cos^(-1)(2/3)-2cot^(-1)(1/7)-cot^(-1)7=cot^(-1)7 Statement-2: cos^(-1)x=sin^(-1)((1)/(x)) and for xgt0cot^(-1)x=tan^(-1)((1)/(x))