Home
Class 12
MATHS
The value of lim(x->oo)((sin)[x])/[[x]] ...

The value of `lim_(x->oo)((sin)[x])/[[x]] (where[*]` denotes the greatest integer function) is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr oo)((sin)[x])/([x])(where[*] denotes the greatest integer function ) is

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

The value of the lim_(x->0)x/a[b/x](a!=0)(where [*] denotes the greatest integer function) is

The value of the lim_(x->0)x/a[b/x](a!=0)(where [*] denotes the greatest integer function) is

lim_(xrarr oo) (logx)/([x]) , where [.] denotes the greatest integer function, is

lim_(xrarr oo) (logx)/([x]) , where [.] denotes the greatest integer function, is

lim_(x -> 0)[sin[x-3]/([x-3])] where [.] denotes greatest integer function is

The value of lim_(x->0) [x^2/(sin x tan x)] (Wherer [*] denotes greatest integer function) is