Home
Class 12
MATHS
The value of lim(n->oo) (1^2 . n+2^2.(n...

The value of `lim_(n->oo) (1^2 . n+2^2.(n-1)+......+n^2 . 1)/(1^3+2^3+......+n^3)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(n -> oo)(1.n+2.(n-1)+3.(n-2)+...+n.1)/(1^2+2^2+...+n^2)

The value of lim_(n -> oo)(1.n+2.(n-1)+3.(n-2)+...+n.1)/(1^2+2^2+...+n^2)

The value of lim_(n -> oo)(1.n+2.(n-1)+3.(n-2)+...+n.1)/(1^2+2^2+...+n^2)

lim_(n->oo) (1.2+2.3+3.4+....+n(n+1))/n^3

The value of lim_(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

The value of lim_(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

The value of Lim_(x to oo)(1.2+2.3+3.4+....+n.(n+1))/(n^(3))= is

The value of lim_(x to oo) (1 + 2 + 3 … + n)/(n^(2)) is

lim_ (n rarr oo) (1 + 2 + 3 + ...... + n) / (n ^ (2))

lim_ (n rarr oo) [(1 * n + 2 (n-1) + ... + n * 1) / (1 ^ (3) + 2 ^ (3) + ... + n ^ (3) ) +1] ^ (n)