Home
Class 12
MATHS
Prove that e^x-e^(-x)-2x >0\ AA\ x > ...

Prove that `e^x-e^(-x)-2x >0\ AA\ x > 0.` Hence, prove that `e^x+e^(-x)\ geqx^2+2\ AA\ x\ geq0.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = (e^(x)-e^(-x))/(e^(x)+e^(-x)) then prove that y = (e^(2x)-1)/(e^(2x)+1) .

Prove that variance E(X^2)-[E(X)]^2

Prove that e^(x) ge 1 +x and hence e^(x) +sqrt(1+e^(2x))ge(1+x)+sqrt(2+2x+x^(2)) forall x in R

Prove that e^(x) ge 1 +x and hence e^(x) +sqrt(1+e^(2x))ge(1+x)+sqrt(2+2x+x^(2)) forall x in R

Prove that e^(x) ge 1 +x and hence e^(x) +sqrt(1+e^(2x))ge(1+x)+sqrt(2+2x+x^(2)) forall x in R

If y = (e^x - e^-x)/(e^x + e^-x) . Prove that dy/dx = 1 - y^2

If g(x)=e^(x) and f(x)=x^(2) then prove that (gof)=e^(x^(2)) and fog=e^(2x)

Prove that e^x+sqrt(1+e^(2x))geq(1+x)+sqrt(2+2x+x^2)AAx in R

Prove that e^x+sqrt(1+e^(2x))geq(1+x)+sqrt(2+2x+x^2)AAx in R

Prove that e^x+sqrt(1+e^(2x))geq(1+x)+sqrt(2+2x+x^2)AAx in R